图书情报知识 ›› 2019, Vol. 0 ›› Issue (5): 54-63.doi: 10.13366/j.dik.2019.05.054

• • 上一篇    下一篇

基于ARIMA模型的信息构建研究主题趋势预测研究

岳丽欣, 周晓英, 陈旖旎   

  • 出版日期:2019-09-10 发布日期:2019-09-25

Thematic Trend Prediction of Information Architecture Based on the ARIMA Model

  • Online:2019-09-10 Published:2019-09-25

摘要: [目的/意义]识别某学科领域期刊论文中蕴含的主要研究主题并预测其发展趋势,有助于掌握学科领域的研究热点和研究动态,对于深入分析领域发展趋势具有一定的意义。[研究设计/方法]首先利用LDA模型进行主题识别,并通过自定义函数获取各个主题的年度概率分布,从而得到主题变化时间序列数据;而后建立ARIMA模型对信息构建领域的主要主题时间序列进行预测分析。[结论/发现] 目前国内信息构建领域信息构建评价指标、信息组织、网络信息和知识构建等研究主题呈现良好的发展势头。[创新/价值]将ARIMA模型应用于信息构建领域,一方面对近20年国内信息构建领域研究主题加以识别并对主要主题的演变趋势进行预测,为信息构建与主题预测有关研究提供参考借鉴,另一方面也验证了本文提出的主题预测方法的可行性和有效性。

关键词: 差分整合移动平均回归模型(ARIMA模型), 信息构建, 研究主题识别, 趋势预测, 可视化

Abstract: [Purpose/Significance]Identifying the main research topics of journal articles in a specific subject and predicting their development trends could be helpful for understanding the research hotspots and trends in this area. It is also significant for a profound analysis on the development trend in this field.[Design/Methodology]Firstly, the LDA model was used for topic recognition, and the annual probability distribution of each topic was obtained through a userdefined function. Besides, time series data of topic evolution was gained. Then, the ARIMA model was established to predict and analyze the time series of main topics in the field of information architecture.[Findings/Conclusion]Currently, there is a good development momentum in the topics including evaluation indicators of information architecture, information organization, network information and knowledge construction in China. [Originality/Value]On the one hand, this paper identifies the research topics in the field of information architecture domestically in the past 20 years, and predicts the evolutionary trend of the main topics. On the other hand, this study verifies the feasibility and effectiveness of the topic prediction method proposed in this paper, and provides reference for the research on information architecture and topic prediction.

Key words: ARIMA model, Information architecture, Identification of research topics, Trend prediction, Visualization