图书情报知识 ›› 2022, Vol. 39 ›› Issue (2): 83-97.doi: 10.13366/j.dik.2022.02.083

• 情报、信息与共享 • 上一篇    下一篇

基于算法归因框架的LIS领域学者施引影响因素实证研究

丁恒,阮靖龙   

  • 出版日期:2022-03-10 发布日期:2022-06-02

Exploring the Factors Influencing LIS Scholars Citing Other's Works: An Empirical Research Based on Algorithmic Attribution

  • Online:2022-03-10 Published:2022-06-02

摘要: [目的/意义]探索施引行为的内在特征对设计科学评价指标、发现科学交流规律、预测学科演化具有重要意义。[研究设计/方法] 本文以微软学术图谱为数据源,采用可解释机器学习构建基于算法归因的实证研究框架,分析了2000-2019年LIS领域18本期刊的参考文献,探究了LIS领域学者施引行为受不同因素的影响大小及变化趋势。[结论/发现] 算法归因框架能够有效揭示LIS领域学者施引时的主要考虑因素、各因素的时间变化趋势以及不同因素与文献被引概率间的量化关系。[创新/价值]本文的研究结论可为理解LIS领域学者的施引行为及时空变化规律提供有价值的洞见;基于算法归因的实证研究框架为施引影响因素探索性研究提供了新方法。

关键词: 施引影响因素, 参考文献分析, 算法归因, 可解释机器学习

Abstract: [Purpose/Significance] This paper explored the inherent characteristics of citing behavior, which is of great significance for designing scientific evaluation indicators, discovering the laws of scientific exchange and predicting the evolution of disciplines. [Design/Methodology] In this paper, the Microsoft Academic Graph was used as the data source and an algorithm attribution frameworkwas constructed based on explainable machine learning technology. Then references of 20,116 articles from 18 LIS journals were analyzed by our algorithm attribution framework for exploring the impact of various factors on citing behavior of scholars in this field and these factors’dynamic changing trend from 2000 to 2019. [Findings/Conclusion] The algorithmic attribution framework can effectively reveal the main considerations when LIS scholars citing others’work. It also can be used for discovering the change trend of each factor, and has the ability to explore the quantitative relationship between each factor and the citation probability. [Originality/Value] The conclusions of this study can provide valuable insights for understanding the citing behavior of LIS scholars and the dynamic change of their citation behavior. The introduced algorithm attribution framework provides a new method for the exploratory research on factors influencing the citing behavior of LIS scholars.

Key words: Factors influencing the citing behavior, Reference analysis, Algorithm attribution, Explainable machine learning