图书情报知识 ›› 2023, Vol. 40 ›› Issue (3): 129-138.doi: 10.13366/j.dik.2023.03.129

• 情报、信息与共享 • 上一篇    下一篇

基于WordBERT和BiLSTM的政策工具自动分类方法研究

霍朝光 1,2, 霍帆帆 1, 王婉如 3, 余芊蓉 1, 杨冠灿 1   

  1. 1.中国人民大学信息资源管理学院,北京, 100872;
    2.中国人民大学数字人文研究院,北京,100872;
    3.首都经济贸易大学财政税务学院,北京, 100070
  • 出版日期:2023-05-10 发布日期:2023-06-25
  • 通讯作者: 王婉如(ORCID:0009-0001-1879-2013),博士,讲师,研究方向:数字经济与财税政策,Email:accwang@163.com。
  • 作者简介:霍朝光(ORCID:0000-0002-5063-0938),博士,副教授,研究方向:政策信息学与文本挖掘,Email:huochaoguang@126.com;霍帆帆(ORCID:0000-0001-8392-8995),博士 研究生,研究方向:政策信息分析与数据治理,Email:huo_ff@163.com;余芊蓉(ORCID:0000-0002-0963-5059),硕士研究生,研究方向:机器学习,Email:yuqianrong77@ruc.edu.cn; 杨冠灿(ORCID:0000-0003-3322-6092),博士,副教授,研究方向:专利分析与机器学习,Email:yanggc@ruc.edu.cn。
  • 基金资助:
    本文系中国人民大学科学研究基金项目(中央高校基本科研业务费专项资金资助)“基于跨语言知识图谱的政策对冲分析”(22XNF053)的研究成果之一。

Automatic Classification Method of Policy Tools Based on WordBERT and BiLSTM

HUO Chaoguang, HUO Fanfan, WANG Wanru, YU Qianrong, YANG Guancan   

  1. 1.School of Information Resources Management, Renmin University of China, Beijing,100872;
    2.Institute of Digital Humanities, Renmin University of China, Beijing, 100872;
    3.School of Public Finance and Taxation, Capital University of Economics and Business, Beijing, 100070
  • Online:2023-05-10 Published:2023-06-25
  • Contact: Correspondence should be addressed to WANG Wanru, Email:accwang@163.com, ORCID:0009-0001-1879-2013
  • Supported by:
    This is an outcome of the Scientific Research Foundation Project of Renmin University of China "Policy Hedging Analysis based on Cross-language Knowledge Graph"(22XNF053) supported by Basic Scientific Research Expenses Fund of Central Universities.

摘要: [目的/意义]政策工具是政府为实现政策目标,将其行政理念转为切实行动的手段和方法,是政策分析的重要维度。鉴于当前政策工具分析仍停留在手工分类阶段,存在标准不统一、难以复现、规模小、成本高等一系列问题,提出构建政策工具自动分类模型。[研究设计/方法 ] 系统梳理了现有的政策工具分类框架,在Rothwell 和 Zegveld 政策工具分类体系基础上,提出基于WordBERT 和 BiLSTM 构建政策工具自动分类模型,以数据治理和数字经济政策数据集为例,自主构建数据集,进行三组实验,验证模型优劣。[结论/发现]研究结果表明提出的政策工具自动分类模型效果最好,准确率达到73.91%,为繁琐的政策工具分类提供了一种相对高效的自动分类方法。[创新/价值]针对政策工具自动分类这一学科难题,提出利用无监督表示学习和有监督机器学习等算法,进行政策工具自动分类,以锻造政策工具自动量化分析新模块。

关键词: 政策工具, 自动分类, WordBERT, BiLSTM, 政策计量

Abstract: [Purpose/Significance] Policy tools are the means and tools for government to implement govern targets and visions, which are important research domain for policy analysis. Considering that the current analysis of policy tools is still in the stage of manual classification, and there are a series of problems such as inconsistent standard of coding check, hard to reproduce, small scale, high cost and so on, this paper proposes to build an automatic classification model of policy tools. [Design/Methodology] This paper systematically sorted out the existing policy tool classification framework, and on the basis of Rothwell and Zegveld policy tool classification system,proposed an automatic policy tool classification model based on WordBERT and BiLSTM.Taking the the datasets of data governance and digital economy policy as an example,we independently constructed the data set and carried out three sets of experiments to verify the advantages and disadvantages of the model. [Findings/Conclusion] We find the automatic classification model of policy tools proposed in this paper work best, with a precision of 73.91%, which provide a highly efficient automatic classification method for the tedious work of policy tools classification. [Originality/Value] Aiming at the difficult problem of automatic classification of policy tools, this paper proposes to utilize unsupervised representation learning and supervised machine learning algorithms for automatic classification, so as to provide a strong tool for policiometrics analysis.