图书情报知识 ›› 2021, Vol. 38 ›› Issue (4): 15-26.doi: 10.13366/j.dik.2021.04.015

• 学术聚焦·网络直播中的知识产品与用户行为 • 上一篇    下一篇

直播平台用户信息交互行为图谱及特征研究

王晰巍,李玥琪,邱程程,毕樱瑛   

  • 出版日期:2021-07-10 发布日期:2021-08-29

Research on Characteristics and Topic Maps of Users’ Information Interaction Behavior on Live Webcast Platforms

  • Online:2021-07-10 Published:2021-08-29

摘要: [目的/意义]网络直播平台是近几年迅速发展和日益受到用户喜爱的新型社交媒体平台,对网络直播平台场景中用户信息交互行为分析,有助于更好地了解用户行为特征及主题偏好。 [研究设计/方法] 采用自然语言处理技术及实体发现技术,构建直播平台用户信息交互行为主题图谱特征模型并进行主题挖掘。结合抖音特定话题,从单用户信息交互图谱、群体间用户信息交互图谱和用户信息感知语义图谱三个方面进行用户信息交互特征分析。 [结论/发现] 直播平台中用户信息交互行为可划分为单一用户信息交互行为和群组信息交互行为,直播平台中对网民群体影响力较大的群组为大众媒体和自媒体,直播平台中用户信息交互行为特征包括信息交互动因性、信息交互孤岛化和信息交互偏向性。[创新/价值]构建了网络直播平台用户信息交互行为特征模型,可以帮助更好地发现直播平台用户信息交互行为主要特征,同时从语义挖掘的角度为后续主题发现相关研究提供新的研究视角,并为网络直播平台用户提供更好的交流及舆情引导提供相应的建设意见和指导建议。

关键词: 网络直播, 信息交互行为, 主题图谱, 特征模型, 语义挖掘

Abstract: [Purpose/Significance]Webcast platform is a new kind of social media platform that has been developing rapidly in recent years and increasingly favored by users. Analyzing users’ information interaction behavior on webcast platform is helpful to better understand users’ behavior characteristics and their topic preferences. [Design/Methodology]With the use of natural language processing technology and entity discovering technology, this study builds a characteristic model for the topic map of users’ information interaction behavior on live webcast platform, and conducts a topic mining. Combined with the topic on Tik Tok, this article analyzes the characteristics of users’ information interaction from three aspects, which are single user’s information interaction map, inter-group users’ interaction map and users’ information perception semantic map.[Findings/Conclusion]Users’ information interaction behavior on live webcast platform can be divided into single user’s  information interaction behavior and group users’ information interaction behavior. Mass media and self-media are the most influential webcast platforms for netizens. The characteristics of users’ information interaction behavior on live webcast platforms include information interaction motivation, isolation and bias. [Originality/Value]This study builds a characteristic model of users’ information interaction behavior on live webcast platforms, which could help reveal the main characteristics of users’ information interaction behavior on webcast platforms better. Meanwhile, it proposes a new research perspective of semantic mining for subsequent research on topic discovery.It also proposes comments and advices for providing users with better communication and public opinion guidance on webcast platforms.

Keywords: Live webcast, Information interaction behavior, Topic map, Characteristic model, Semantic mining