图书情报知识 ›› 2025, Vol. 42 ›› Issue (4): 126-138.doi: 10.13366/j.dik.2025.04.126

• 情报、信息与共享 • 上一篇    下一篇

在共生中抵抗:智能推荐用户算法焦虑与算法回避的非线性关系研究

占南, 陈玉孟   

  1. 河南科技大学商学院,洛阳,471000
  • 出版日期:2025-07-10 发布日期:2025-08-16
  • 通讯作者: 占南(ORCID: 0000-0003-1445-5674),博士,副教授,研究方向:信息资源管理、信息行为,Email: zhannan@haust.edu.cn。
  • 作者简介:陈玉孟(ORCID: 0009-0002-2476-5756),硕士研究生,研究方向:用户信息行为,Email: 13213670093@163.com。
  • 基金资助:
    本文系国家自然科学基金面上项目“隐私政策视角下企业数据合规与风险管理研究”(72474101)和河南省高等学校哲学社会科学创新团队支持计划(2024-CXTD-13)的研究成果之一。

Resistance in Symbiosis: A Study of the Nonlinear Relationship Between Algorithmic Anxiety and Algorithmic Avoidance Among Intelligent Recommendation Users

ZHAN Nan, CHEN Yumeng   

  1. Business School, Henan University of Science and Technology, Luoyang, 471000
  • Online:2025-07-10 Published:2025-08-16
  • Contact: Correspondence should be addressed to ZHAN Nan, Email: zhannan@haust.edu.cn, ORCID: 0000-0003-1445-5674
  • Supported by:
    This is an outcome of the project "Research on Corporate Data Compliance and Risk Management from the Perspective of Privacy Policies"(72474101)supported by National Natural Science Foundation of China, and a grant(2024-CXTD-13)from the Support Program for Innovation Teams in Philosophy and Social Sciences of Higher Education Institutions in Henan Province.

摘要: [目的/意义]算法失当现象引发普遍的算法焦虑甚至算法危机,理解用户算法应对行为的发生过程及形成机理有助于人工智能的健康发展。[研究设计/方法]基于应对理论,构建了智能推荐用户算法焦虑对算法回避的U型影响模型。通过问卷调查法收集351份有效问卷,利用层次回归分析和MEDCURVE宏程序进行数据分析和假设检验。[结论/发现]算法焦虑与算法回避、算法抵抗与算法回避均存在U型关系;算法抵抗在算法焦虑和算法回避的关系中起到中介作用;算法意识正向调节了算法焦虑与算法回避的关系,当用户算法意识越高时,U型曲线越陡峭,反之算法意识越低时,U型曲线越平缓;算法意识在算法焦虑对算法抵抗的影响中不发挥调节作用。[创新/价值]厘清了算法焦虑与行为反应的复杂动态关系,为优化平台算法服务、实施差异化用户管理、提升用户算法适应性能力提供理论依据和实践指导,助力算法应用生态建设。

关键词: 算法焦虑, 算法抵抗, 算法回避, 算法意识, 智能推荐, 应对理论

Abstract: [Purpose/Significance] The phenomenon of algorithmic malpractice causes general algorithmic anxiety and even algorithmic crisis. Understanding the occurrence process and formation mechanism of user algorithmic coping behavior is helpful to the healthy development of artificial intelligence. [Design/Methodology] Based on the the coping theory, this study constructs a U-shaped influence model of algorithmic anxiety on algorithmic avoidance among intelligent recommendations users. A total of 351 valid questionnaires are collected through a survey, and data analysis and hypothesis testing are conducted using hierarchical regression analysis and the MEDCURVE macro program. [Findings/Conclusion] There is a U-shaped relationship between algorithmic anxiety and algorithmic avoidance, as well as between algorithmic resistance and algorithmic avoidance; algorithmic resistance plays a mediating role in the U-shaped relationship between algorithmic anxiety and algorithmic avoidance; algorithmic awareness positively moderates the relationship between algorithmic anxiety and algorithmic avoidance, making the U-shaped curve steeper when users have higher algorithmic awareness, and flatter when they have lower algorithmic awareness; algorithmic awareness does not moderate the effect of algorithmic anxiety on algorithmic resistance. [Originality/Value] This study clarifies the complex dynamic relationship between algorithmic anxiety and algorithmic coping behavior, providing a theoretical foundation and practical guidance for optimizing platform algorithmic services, implementing differentiated user management, and enhancing users' algorithmic adaptability, and thereby contributing to the development of the algorithmic application ecosystem.

Keywords: Algorithmic anxiety, Algorithmic resistance, Algorithmic avoidance, Algorithmic awareness, Intelligent recommendation, Coping theory