图书情报知识 ›› 2025, Vol. 42 ›› Issue (1): 124-134,145.doi: 10.13366/j.dik.2025.01.124

• 情报、信息与共享 • 上一篇    下一篇

融合TextRank4ZH与余弦相似度的代表作观点贡献度评价方法研究

段尧清1,2 ,凌榕1,2   

  1. 1.华中师范大学信息管理学院,武汉,430079;
    2.湖北省数据治理与智能决策研究中心,武汉,430079
  • 出版日期:2025-01-10 发布日期:2025-03-19
  • 通讯作者: 凌榕(ORCID:0009-0004-4531-9725),硕士研究生,研究方向:学术评价、数字政府,Email:lingr202202@163.com。
  • 作者简介:段尧清(ORCID:0000-0002-8991-5842),博士,教授,研究方向:政务大数据与公共服务、管理创新,Email:dyq@ccnu.edu.cn。
  • 基金资助:
    本文系国家社科基金重大项目“数字政府建设成效测度与评价的理论、方法及应用研究”(23&ZD081)的研究成果之一。

The Evaluation Method of Opinion Contributions of Representative Works Integrating TextRank4ZH and Cosine Similarity

DUAN Yaoqing1,2, LING Rong1,2   

  1. 1. School of Information Management, Central China Normal University, Wuhan,430079;
    2. Center for Data Governance and Intelligent Decision, Hubei Province, Wuhan,430079
  • Online:2025-01-10 Published:2025-03-19
  • Contact: Correspondence should be addressed to LING Rong, Email: lingr202202@163.com
  • Supported by:
    This is an outcome of the Major Project "Research on Theories, Methods and Applications of Measurement and Evaluation of Digital Government Construction Effectiveness"(23&ZD081)supported by National Social Science Foundation of China.

摘要: [目的/意义]基于学者代表作评价问题,建立一套全程基于机器算法的学者代表作贡献度评价体系,用以辅助同行评议制度,以进一步提高同行评议的准确性和客观性。[研究设计/方法]提出代表作观点贡献度指标,通过构建加权指数衰减模型,结合观点比较以及时间顺序分析的方法,综合计算得出观点贡献度指标值。同时采用同行评议的方式对相同样本数据集进行人工打分,对比分析人工与模型评估结果的一致性,从而验证本研究所提出方法的有效性及可行性。[结论/发现]提出一套结合观点主题提取以及余弦相似度比较的观点贡献度指标评价模型,经验证该模型所得出的指标值与同行评议的结果一致性较高,达到86.85%,这表明该模型在辅助同行评议方面具有较高的应用价值。[创新/价值]融合TextRank4ZH模型及时间顺序构建出一套可全程由机器算法运行实现的观点贡献度指标模型,可用于辅助同行评议制度,在提升评价结果的可靠性和公正性方面具有较强的现实意义。

关键词: 学术代表作, 同行评议, 贡献度, 评价模型

Abstract: [Purpose/Significance] The objective of this study is to develop a machine algorithm-based evaluation system for assessing the scholarly contributions of representative works, so as to further improve the accuracy and objectivity of peer review. [Design/Methodology] This study proposed an index system for assessing opinion contribution of the representative works. Then, by constructing a weighted exponential decay model and integrating the methods of view comparison and temporal order analysis, it comprehensively calculated these indexes. Additionally, a manual peer review was conducted, on the same sample dataset, and the consistency between the evaluation results obtained from manual assessment and the proposed model were compared, thereby validating the efficacy and practicability of the proposed method. [Findings/Conclusion] This study proposes a evaluation index model of opinion contribution combining thematic terms extraction and the comparison of Cosine Similarity. It is verified that the index value obtained from this model are highly consistent with the results of peer-review, reaching almost 86.85%, indicating that the model has high application value in assisting peer review. [Originality/Value] The TextRank4ZH model and time series methodology are integrated in this study to build an evaluation index model of opinion contributions that can be realized by the machine algorithm. This evaluation methodology can be used to assist the peer review system, and has strong practical significance in improving the reliability and impartiality of the evaluation results.

Keywords: Academic representative works, Peer review, Contribution degree, Evaluation model