图书情报知识 ›› 2025, Vol. 42 ›› Issue (1): 146-157.doi: 10.13366/j.dik.2025.01.146

• 情报、信息与共享 • 上一篇    下一篇

人工智能在数字资源长期保存领域应用进展述评

吴欣雨1,2 ,吴振新1,2   

  1. 1.中国科学院文献情报中心,北京,100190;
    2.中国科学院大学经济与管理学院信息资源管理系,北京,100190
  • 出版日期:2025-01-10 发布日期:2025-03-20
  • 通讯作者: 吴振新(ORCID: 0000-0003-4966-1961),硕士,研究馆员,研究方向:数字资源组织、管理长期保存和重用,Email: wuzx@mail.las.ac.cn。
  • 作者简介:吴欣雨(ORCID: 0009-0006-6145-3208),博士研究生,研究方向:数字资源长期保存,Email: wuxinyu@mail.las.ac.cn。

Review on the Application of Artificial Intelligence in the Field of Long-term Preservation of Digital Resources

WU Xinyu1,2, WU Zhenxin1,2   

  1. 1. National Science Library, Chinese Academy of Sciences, Beijing, 100190;
    2. Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing, 100190
  • Online:2025-01-10 Published:2025-03-20
  • Contact: Correspondence should be addressed to WU Zhenxin, Email: wuzx@mail.las.ac.cn, ORCID: 0000-0003-4966-1961

摘要: [目的/意义]为促进智能技术在长期保存领域的应用与实践,实现对信息的深层加工与探索,进一步推动长期保存工作的高质量发展,对人工智能与数字资源长期保存工作的有机结合进行探索。[研究设计/方法]调研国内外长期保存机构的相关研究进展,基于OAIS模型功能模块的划分,梳理人工智能在数字资源长期保存领域的应用场景,并在此基础上分析研究现状与存在的问题。[结论/发现]当前人工智能技术基本覆盖了保存工作流程的主要功能,其深度发展将为长期保存带来一场全面的变革,但总体来说仍存在技术风险、认知不完备、缺乏整体解决方案的问题。数字资源长期保存工作应在坚持自身特性的同时抓住技术机遇、积极寻求解决策略,实现数字资源的可持续发展。[创新/价值]按照数字资源保存工作全流程的模式对人工智能在长期保存领域中的应用进行总结,归纳国内外人工智能在长期保存工作中的应用特点与模式,形成保存实现框架。

关键词: 数字资源, 长期保存, 人工智能, 机器学习, 数字档案

Abstract: [Purpose/Significance] In order to promote the application and practice of intelligent technology in the field of long-term preservation of digital resources, realize the deep processing and exploration of information, further promote the high-quality development of long-term digital resources preservation, this paper explores the organic combination of artificial intelligence with long-term preservation of digital resources.[Design/Methodology] This paper investigates the current research progress of long-term preservation institutions both at home and abroad. It sorts out the application scenarios of artificial intelligence in the field of long-term preservation of digital resources based on the division of functional modules of OAIS model, and subsequently analyzes the research status and existing problems on this basis. [Findings/Conclusion] The study finds that current AI technologies has been essentially applied in the core functionalities of preservation workflows. Their further development promises to a comprehensive transformation for long-term preservation. However, there remain challenges such as technical risks, incomplete understanding, and a lack of comprehensive solutions. To ensure the sustainable development of long-term preservation of digital resources while upholding their inherent characteristics, it is imperative to seize emerging technological opportunities and actively seek viable solutions in long-term preservation of digital resources. [Originality/Value] This study systematically reviews the application of artificial intelligence in long-term digital resources preservation, encompassing the entire process of preservation. It outlines the characteristics and patterns of artificial intelligence applications in long-term preservation work both domestically and internationally, and establishes an implementation framework for preservation strategies.

Keywords: Digital resources, Long-term preservation, Artificial Intelligence, Machine learning, Digital archives