图书情报知识 ›› 2025, Vol. 42 ›› Issue (4): 55-65, 125.doi: 10.13366/j.dik.2025.04.055

• 专稿·2024年中国科技情报学会健康信息学专委会学术年会论文 • 上一篇    下一篇

生成式人工智能在失真健康信息甄别中的作用及用户体验研究

宋小康1, 赵宇翔2,3, 沈良1, 宋士杰4,5, 朱庆华2   

  1. 1.徐州医科大学管理学院,徐州,221004;
    2.南京大学信息管理学院,南京,210023;
    3.南京大学数据智能与交叉创新实验室,南京,210023;
    4.河海大学商学院,南京,211100;
    5.武汉大学信息管理学院,武汉,430072
  • 出版日期:2025-07-10 发布日期:2025-08-16
  • 通讯作者: 宋小康(ORCID: 0000-0002-9862-908X),博士,副教授,研究方向:健康信息学、信息行为,Email: sxksxk666@163.com。
  • 作者简介:赵宇翔(ORCID: 0000-0001-9281-3030),博士,教授,研究方向:用户信息行为,Email: yxzhao@vip.163.com;沈良(ORCID:0000-0003-4290-5097),博士,副教授,研究方向:健康大数据挖掘,Email: liang_shen@xzhmu.edu.cn;宋士杰(ORCID: 0000-0002-4544-2027),博士,副教授,研究方向:信息行为、健康信息学,Email: ssong@hhu.edu.cn;朱庆华(ORCID: 0000-0002-4879-399X),博士,教授,研究方向:信息资源管理、健康信息学,Email: qhzhu@nju.edu.cn。
  • 基金资助:
    本文系国家自然科学基金青年项目“在线健康信息替代搜寻对老年人健康素养的影响及作用机制研究”(72204210)和国家自然科学基金面上项目“社交媒体环境下失真健康信息的传播机制与协同治理研究”(72174083)的研究成果之一。

The Role and User Experience of Generative Artificial Intelligence in Health Misinformation Identification

SONG Xiaokang1, ZHAO Yuxiang2,3, SHEN Liang1, SONG Shijie4,5, ZHU Qinghua2   

  1. 1. School of Management, Xuzhou Medical University, Xuzhou, 221004;
    2. School of Information Management, Nanjing University, Nanjing, 210023;
    3. Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing, 210023;
    4. Business School, Hohai University, Nanjing, 211100;
    5. School of Information Management, Wuhan University, Wuhan, 430072
  • Online:2025-07-10 Published:2025-08-16
  • Contact: Correspondence should be addressed to SONG Xiaokang,Email: sxksxk666@163.com, ORCID: 0000-0002-9862-908X
  • Supported by:
    This is an outcome of the Youth Project "Research on the Influence and Mechanism of Online Surrogate Health Information Seeking on the Health Literacy of the Elderly"(72204210)and the project "Research on the Diffusion Mechanism and Collaborative Governance of Health Misinformation in Social Media"(72174083), both supported by National Natural Science Foundation of China.

摘要: [目的/意义]旨在从技术使用(technology-in-use)的视角,探索生成式人工智能(Generative Artificial Intelligence,GAI)工具在失真健康信息甄别中的作用及用户体验。[研究设计/方法]使用融合随机对照实验、问卷和访谈的混合方法获取研究数据,基于独立样本T检验和非参数检验对用户使用GAI甄别失真健康信息的行为表现和感知体验进行分析。[结论/发现] GAI组任务完成时间显著低于搜索引擎组,且GAI组在完成任务过程中平均信息获取次数更少。用户使用GAI搜索后的得分显著高于搜索前的得分,且显著高于搜索引擎组的得分。用户使用GAI进行失真健康信息甄别的感知有效性、高效性、吸引性和总体验显著高于搜索引擎组,在感知易学性和容错性方面没有显著差异。GAI甄别失真健康信息的用户体验遵循“任务技术匹配—用户信息行为—用户体验感知”的故事线。[创新/价值]使用混合方法探究GAI在失真健康信息甄别中的应用,能够为智能信息服务和失真健康信息干预提供启示。

关键词: 生成式人工智能, 失真健康信息, 信息甄别, 用户体验, ChatGPT

Abstract: [Purpose/Significance] This paper aims to explore the role and user experience of using Generative Artificial Intelligence (GAI)in health misinformation identification from the perspective of technology-in-use. [Design/Methodology] This study used a mixed-methods approach incorporating fusion randomized controlled experiment, questionnaires, and interviews to gather research data, and analyzed the behavioral performance and perceived experience of users using GAI to identify health misinformation based on independent sample T-test and non-parametric test. [Findings/Conclusion] This research has found that the completion time for tasks in the GAI group are significantly shorter than that of the search engine group, while the average amount times of information interactions during the task completion process in the GAI group are reduced. The users' scores after using GAI search are significantly higher than their pre-search scores, and also significantly higher than those in the search engine group. The perceived effectiveness, efficiency, attractiveness, and overall experience of users in GAI group are significantly higher than those of the search engine group. There is no significant difference between the two groups in terms of perceived learnability, and error tolerance. The user experience of GAI in health misinformation identification follows the storyline of "task technology matching-user information behavior-user experience perception". [Originality/Value] This study comprehensively explore the application of GAI in health misinformation identification through a mixed-methods approach, which can provide insights for intelligent information services and interventions targeting health misinformation.

Keywords: Generative Artificial Intelligence, Health misinformation, Information identification, User experience, ChatGPT