图书情报知识 ›› 2025, Vol. 42 ›› Issue (6): 87-97,141.doi: 10.13366/j.dik.2025.06.087

• 情报、信息与共享 • 上一篇    下一篇

双边发展还是单边活跃:跨平台用户分类及其行为规律分析

严炜炜1,2, 邵家伟1, 张敏1,2   

  1. 1.武汉大学信息管理学院,武汉,430072;
    2.武汉大学电子商务研究与发展中心,武汉,430072
  • 出版日期:2025-11-10 发布日期:2026-01-17
  • 通讯作者: 邵家伟(ORCID: 0009-0001-8839-9831),硕士研究生,研究方向:用户信息行为,Email: shaojiawei@whu.edu.cn。
  • 作者简介:严炜炜(ORCID: 0000-0001-6688-3393),博士,教授,研究方向:用户信息行为,Email: yanww@whu.edu.cn;张敏(ORCID: 0000-0003-4805-9725),博士,教授,研究方向:用户信息行为,Email: zhangmin@whu.edu.cn。
  • 基金资助:
    本文系国家自然科学基金面上项目“情境意识驱动的跨平台知识交流行为及其价值共创研究”(72374159)和中央高校基本科研业务费专项基金资助项目“多元社区情境下用户知识交流价值识别与共创研究”(2042023kf0173)的研究成果之一。

Bilateral Development or Unilateral Activity: An Analysis of Cross-Platform User Classification and Behavioral Pattern

YAN Weiwei1,2, SHAO Jiawei1, ZHANG Min1,2   

  1. 1. School of Information Management, Wuhan University, Wuhan, 430072;
    2. Center for E-Commerce Research and Development, Wuhan University, Wuhan, 430072
  • Online:2025-11-10 Published:2026-01-17
  • Contact: Correspondence should be addressed to SHAO Jiawei, Email: shaojiawei @whu.edu.cn, ORCID: 0009-0001-8839-9831
  • Supported by:
    This is an outcome of the project "Research on the Cross-Platform Knowledge Exchange Behavior Driven by Situation Awareness and its Value Co-Creation"(72374159)supported by National Natural Science Foundation of China, and the project "Research on Value Recognition and Value Co-Creation of User Knowledge Exchange in Multi-Community Context"(2042023kf0173)supported by Fundamental Scientific Research Expenses Foundation for the Central Universities.

摘要: [目的/意义] 随着网络平台的多样化,用户倾向通过多个平台获取和共享知识内容。因此,关注跨平台用户分类对准确识别跨平台用户、理解跨平台知识交流行为、揭示跨平台行为体系具有较大意义。[研究设计/方法] 以Bilibili知识区的120位科普用户为研究对象,在用户对齐基础上,获取其在Bilibili和微博两个平台上的属性、内容、互动数据,构建出跨平台用户分类模型,并利用K-means算法实现跨平台用户分类及其行为规律分析。[结论/发现] 跨平台用户分为三类:跨平台双边异质用户、跨平台双边同质用户、跨平台单边活跃用户。其中跨平台双边异质用户占比最多,该类用户会基于对平台的认知在平台上呈现出不同的内容;而跨平台双边同质用户在两个平台上的内容呈现差别不大,但在互动反馈维度平台差异较大;跨平台单边活跃用户占比最少,该类用户的特征是在投入程度、互动值方面平台差异明显。[创新/价值]构建了跨平台用户分类模型及其指标体系,阐述了不同类型跨平台用户的特性,并揭示了用户的跨平台双边发展倾向。研究对于在跨平台情境下构建用户画像并理解其行为规律具有价值,为跨平台生态的优化提供参考。

关键词: 跨平台, 知识交流行为, 跨平台用户分类, CRFM模型, K-means

Abstract: [Purpose/Significance] With the diversification of online platforms, users tend to acquire and share knowledge across multiple platforms. Therefore, focusing on the classification of cross-platform users is of significance for accurately identifying cross-platform users, understanding their cross-platform knowledge exchange behaviors, and uncovering the structure of cross-platform behavior system. [Design/Methodology] In this paper, we take 120 users in Bilibili knowledge board as the research object. Based on users alignment, we obtain their attributes, content creation , and interaction data both on Bilibili and Weibo. Subsequently, we construct a cross-platform user classification model, and realize cross-platform user classification and their behavioral patterns analysis, utilizing the K-means algorithm.[Findings/Conclusion] Cross-platform users can be categorized into three types: cross-platform bilateral heterogeneous users, cross-platform bilateral homogeneous users, and cross-platform unilateral active users. Among these, cross-platform bilateral heterogeneous users constitute the largest proportion, presenting different content on each platform based on their understanding of the platforms. Cross-platform bilateral homogeneous users show minimal variation in content presentation between the two platforms, but exhibit significant differences in interaction feedback. Cross-platform unilateral active users represent the smallest proportion, and are characterized by marked disparities in engagement levels and interaction values between platforms. [Originality/Value] This study develops a cross-platform user classification model and its corresponding indicator system, elucidates the characteristics of different types of cross-platform users and uncovers the across-platform bilateral development tendency of users. The research holds significant value in constructing user profiles and understanding their behavioral patterns in cross-platform contexts, and provides valuable insights for optimizing cross-platform ecosystems.

Keywords: Cross-platform, Knowledge exchange behavior, Cross-platform user classification, CRFM model, K-means