图书情报知识 ›› 2025, Vol. 42 ›› Issue (3): 53-65, 87.doi: 10.13366/j.dik.2025.03.053

• 学术聚焦·大模型与信息资源管理 • 上一篇    下一篇

检入新境:大语言模型引领的信息检索主题与知识关联演化分析

陈帅朴1,2,3, 刘芳霖1,2,3, 钱宇星4, 倪珍妮1,2,3, 张志剑1,2,3, 荣国阳1,2,3   

  1. 1.武汉大学信息管理学院,武汉,430072;
    2.武汉大学大数据研究院,武汉,430072;
    3.武汉大学信息资源研究中心,武汉,430072;
    4. 南京大学新闻传播学院,南京,210023
  • 出版日期:2025-05-10 发布日期:2025-06-23
  • 通讯作者: 陈帅朴(ORCID: 0009-0005-7597-1017),博士研究生,研究方向:知识组织与信息检索,Email: neochenspu@whu.edu.cn。
  • 作者简介:刘芳霖(ORCID: 0000-0002-0073-0869),硕士研究生,研究方向:信息检索与文本挖掘, Email: wonfanglinl@whu.edu.cn;钱宇星(ORCID: 0000-0002-3803-2505),博士,助理研究员,研究方向:智能传播与计算传播, Email: qianyuxing@nju.edu.cn;倪珍妮(ORCID: 0000-0003-1422-2168),博士研究生,研究方向:社交媒体与信息传播, Email: Jennie_n@whu.edu.cn;张志剑(ORCID: 0000-0002-7758-9277),博士,研究方向:信息检索与知识图谱, Email: zzjian@whu.edu.cn;荣国阳(ORCID: 0000-0002-5822-2306),博士研究生,研究方向:知识组织与科学计量,Email: chrisr@whu.edu.cn。
  • 基金资助:
    本文系国家社会科学基金项目“加快构建中国特色哲学社会科学学科体系、学术体系、话语体系”研究专项项目“新时代中国特色图情学基本理论问题研究”(19VXK09)的研究成果之一。

Topic and Knowledge Association Evolution in the Field of Large Language Model-enabled Information Retrieval

CHEN Shuaipu1,2,3, LIU Fanglin1,2,3, QIAN Yuxing4, NI Zhenni1,2,3, ZHANG Zhijian1,2,3, RONG Guoyang1,2,3   

  1. 1. School of Information Management, Wuhan University, Wuhan, 430072;
    2. Institute of Big Data, Wuhan University, Wuhan, 430072;
    3. Center for Studies of Information Resources, Wuhan University, Wuhan, 430072;
    4. School of Journalism and Communication, Nanjing University, Nanjing, 210023
  • Online:2025-05-10 Published:2025-06-23
  • Contact: Correspondence should be addressed to CHEN Shuaipu, Email: neochenspu@whu.edu.cn, ORCID: 0009-0005-7597-1017
  • Supported by:
    This is an outcome of the Special Research Project "A Study on the Basic Theoretical Problems of Library and Information Science with Chinese Characteristics in the New Era"(19VXK09)affiliated to the project "Accelerating the Construction of the Discipline System, Academic System and Discourse System of Philosophy and Social Sciences with Chinese Characteristics" supported by National Social Science Foundation of China.

摘要: [目的/意义]大语言模型(Large Language Model, LLM)正在引领信息检索领域经历从简单的文档检索走向全面满足用户信息需求的新阶段,审视和探讨LLM在这一转型过程中的演化趋势及其未来发展,对于LLM赋能信息检索领域的理论模式创新与实践应用延展有着重要意义。[研究设计/方法]研究选取信息检索领域的多个前沿学科会议,通过主题以及知识关联演化的双重视角分析,深入探究LLM等前沿技术如何推动信息检索领域的演化发展、知识重构以及创新应用,进而揭示在LLM影响下信息检索领域的未来发展方向。[结论/发现]受LLM驱动,信息检索领域的研究主题和知识结构正经历演变。研究范式层面注重人机协同新理念、技术伦理的重视、用户体验增强带来的范式融合。研究技术层面注重LLM的高效检索模型架构与工作流程优化、轻量级语言模型与LLM的协同发展以及LLM的开源及平权发展。然而,LLM赋能信息检索领域仍面临技术评测有效性困难、生成内容的可靠性存疑以及社会应用的复杂性较高等挑战。[创新/价值]将细粒度的知识关联网络引入演化分析框架,创新技术赋能领域研究的多维分析视角。同时从数据层面厘清和揭示信息检索领域的演化规律,明确领域未来发展。

关键词: 大语言模型, 信息检索, 主题演化, 检索增强生成

Abstract: [Purpose/Significance] Large language models(LLM)are leading the information retrieval field to transition from simple document retrieval towards a new stage of comprehensively satisfying users' information needs. Reviewing and exploring the evolutionary trends and future developments of LLM during this transition is of great significance for theoretical innovation and practical application extension in the field of LLM-enabled information retrieval. [Design/Methodology] This research selects multiple leading conferences in the field of information retrieval and analyzes them from dual perspectives of thematic and knowledge association evolution. It deeply investigates how frontier technologies like LLM are driving the evolutionary development, knowledge reconstruction, and innovative applications in information retrieval, thereby revealing the future development directions of the field under the influence of LLM. [Findings/Conclusion] Driven by LLM, the research themes and knowledge structures in the field of information retrieval are undergoing evolution. At the research paradigm level, there is a focus on new concept of human-machine collaboration, technological ethics, and the paradigm integration brought about by enhanced user experience. At the technical level, there is an emphasis on efficient retrieval model architectures and workflow optimization of LLM, the collaborative development of lightweight language models and LLMs, as well as the open-source and equitable development of LLM. However, the application of LLM in information retrieval still faces challenges such as difficulties in effective technical evaluation, uncertainties regarding the reliability of generated content, and the high complexity of social applications. [Originality/Value] This research introduces fine-grained knowledge association networks into the evolutionary analysis framework, providing a multi-dimensional analytical perspective for research in technology-enabled fields. It also clarifies and reveals the evolutionary patterns of the information retrieval field from the data level, delineating the future development of the field.

Keywords: Large Language Model(LLM), Information retrieval, Topic evolution, Retrieval-augmented generation