图书情报知识 ›› 2025, Vol. 42 ›› Issue (4): 113-125.doi: 10.13366/j.dik.2025.04.113

• 情报、信息与共享 • 上一篇    下一篇

生成式AI搜索引擎人机结合的选题思路拓展研究

王树义1, 曾雯1, 戚淇1, 许隆鑫1, 岳芳2,3   

  1. 1.天津师范大学管理学院,天津,300387;
    2.中国科学院武汉文献情报中心,武汉,430071;
    3.科技大数据湖北省重点实验室,武汉,430071
  • 出版日期:2025-07-10 发布日期:2025-08-16
  • 通讯作者: 王树义(ORCID: 0000-0001-5595-4416),博士,副教授,研究方向:人工智能应用、复杂知识网络管理,Email: nkwshuyi@gmail.com。
  • 作者简介:曾雯(ORCID: 0009-0003-9961-9056),硕士研究生,研究方向:人工智能应用,Email: aaaarwen48@gmail.com;戚淇(ORCID: 0009-0006-3467-0207),硕士研究生,研究方向:人工智能应用,Email: qiqi1145712532@163.com;许隆鑫(ORCID: 0009-0005-2933-3866),硕士研究生,研究方向:人工智能应用,Email: 1079466805@qq.com;岳芳(ORCID: 0000-0002-3298-7108),副研究员,研究方向:先进能源科技情报研究,Email: yuef@whlib.ac.cn。
  • 基金资助:
    本文系科技大数据湖北省重点实验室开放课题基金项目“科技前沿识别多智能体工作流系统研究与应用”(E4KF011001)的研究成果之一。

The Expansion of Research Topic Ideas with the Integration of Generative AI Search Engines and Human-Computer Collaboration

WANG Shuyi1, ZENG Wen1, QI Qi1, XU Longxin1, YUE Fang2,3   

  1. 1.School of Management, Tianjin Normal University, Tianjin, 300387;
    2. National Science Library(Wuhan). Chinese Academy of Sciences, Wuhan, 4300781;
    3. Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430071
  • Online:2025-07-10 Published:2025-08-16
  • Contact: Correspondence should be addressed to WANG Shuyi, Email: nkwshuyi@gmail.com, ORCID: 0000-0001-5595-4416
  • Supported by:
    This is an outcome of the project "Research and Application of Multi-Agent Workflow Systems for Identifying the Frontiers of Science and Technology"(E4KF011001)supported by the Open Topic Foundation of Hubei Key Laboratory of Big Data in Science and Technology.

摘要: [目的/意义]旨在探讨如何有效利用生成式AI搜索引擎与人机结合的方式拓展科研选题思路,以应对信息过载和研究选题困难的问题。[研究设计/方法]针对研究现状提出基于生成式AI搜索引擎的选题工作流,通过实验和访谈的方法对选题过程进行验证。结果显示并依据结果讨论“人在环中”在选题过程中的优势。[结论/发现]所有被试对选题拓展效果的满意度评分均在90分及以上(满分100分),生成式AI搜索引擎可以有效辅助科研选题,但需要采取人机结合的方式才能发挥最大效用;“人在环中”可以充分发挥AI的优势,提升选题质量和效率,推动科学研究向更高层次发展。[创新/价值]基于生成式AI搜索引擎与人机结合的选题思路拓展方法,为科研工作者提供了一种全新的选题思路和方式,有助于缓解信息过载和研究选题困难的问题,为科研工作者提供了理论指导。

关键词: 生成式AI, 搜索引擎, 人机结合, 科研选题

Abstract: [Purpose/Significance] This study aims to investigate how to effectively utilize generative AI search engines combined with human-machine collaboration to expand scientific research topic selection, in order to address the challenges of information overload and difficulties in selecting research topics. [Design/Methodology] This research proposes a topic selection workflow based on generative AI search engines in response to the current research landscape, and verifies the topic selection process through experimental and interview methods. The study discusses the advantages of the "human-in-the-loop" in the topic selection process based on the results. [Findings/Conclusion] In the experiment, all participants give a satisfaction score of 90 or above(out of 100)for the effect of topic expansion. Generative AI search engines can effectively assist in scientific research topic selection, but their maximum utility can only be achieved by adopting a human-machine collaborative approach. The "human-in-the-loop" paradigm can fully leverage the strengths of AI, enhancing the quality and efficiency of topic selection and propelling scientific research to a higher level of development. [Originality/Value] The method of expanding topic selection based on generative AI search engines and human-machine integration offers researchers a novel way for topic selection. This method aids in alleviating the issues of information overload and the difficulties associated with selecting research topics, providing theoretical guidance for researchers.

Keywords: Generative AI, Search engine, Human-computer collaboration, Research topic selection