图书情报知识 ›› 2022, Vol. 39 ›› Issue (6): 35-44.doi: 10.13366/j.dik.2022.06.035

• 专题 · 人工智能驱动下的信息管理 • 上一篇    下一篇

电子商务水军检测的新方法:自适应邻域精准化采样的多关系图神经网络

徐瑞卿,张志旺,孙宏亮   

  • 出版日期:2022-11-10 发布日期:2023-02-24

A New Method for Detecting E-Commerce Spammer: Multi-relationship Graph Neural Network Using Precise Sampling and Adaptive Neighborhood

  • Online:2022-11-10 Published:2023-02-24

摘要: [目的/意义]本文旨在从图神经网络的视角提出一种新的水军检测算法,为保障电子商务环境健康、商家信誉、市场公平提供支持。[研究设计/方法]结合多关系图神经网络,引入新型采样策略,设计出一种基于精准化采样和自适应邻域的多关系神经网络的电子商务反欺诈算法,并将这种新算法应用于真实世界Yelp和Amazon的数据集上进行效果检验。[结论/发现]与过去的反欺诈方法对比发现:这一新方法在缓解类别不平衡带来的影响时有显著的效果。[创新/价值]该方法提供了一种新的抽样策略,为有效解决欺诈检测研究中面临的海量用户中仅有少量欺诈用户导致的类别不平衡问题,提供了一种新的思路。

关键词: 欺诈检测, 类别不平衡, 精准化采样, 自适应邻域, 多关系图

Abstract:  [Purpose/Significance] To ensure the health of the e-commerce environment, business reputation and market fairness, this paper aims to propose a new spammer detection algorithm from the perspective of graph neural network. [Design/Methodology] Combined with the multiple relational neural network, we introduce a new sampling strategy, and design a new method of multiple relationship graph neural network based on precise sampling and adaptive neighborhood.Then this new approach is used on the real world Yelp and Amazon datasets to test the effect. [Findings/Conclusion] Compared with the existing fraud detection methods, this new algorithm, has a significant effect in mitigating the impact of category imbalance. [Originality/Value] This method introduces a new sampling strategy to solve the category imbalance problem caused by a small number of fraudulent users among a large number of benign users in fraud detection research.


Keywords: Fraud detection, Category imbalance, Precise sampling, Adaptive neighborhood , Multiple relationship graph