图书情报知识 ›› 2025, Vol. 42 ›› Issue (3): 31-43,98.doi: 10.13366/j.dik.2025.03.031

• 专题· AI 相关问题 • 上一篇    下一篇

人工智能决策性别公平研究:构件、模式与生态系统

吴丹1,2, 郭清玥1, 刘静1   

  1. 1.武汉大学信息管理学院,武汉,430072;
    2.武汉大学妇女与性别研究中心,武汉,430072
  • 出版日期:2025-05-10 发布日期:2025-06-23
  • 通讯作者: 吴丹(ORCID: 0000-0002-2611-7317),博士,教授,研究方向:信息组织与检索、用户信息行为、人机交互等,Email: woodan@whu.edu.cn。
  • 作者简介:郭清玥(ORCID: 0000-0003-1665-9996),博士研究生,研究方向:用户信息行为,人机交互,Email: yuemail@whu.edu.cn;刘静(ORCID: 0000-0002-5101-5830),博士研究生,研究方向:用户信息行为,人机交互,算法素养,Email: 875782033@qq.com。
  • 基金资助:
    本文系国家自然科学基金重大研究计划培育项目“人机交互视角下数据与知识双驱动的可解释智能决策方法研究”(92370112)和湖北省自然科学基金创新群体项目“以人为本的人工智能创新应用”(2023AFA012)的研究成果之一。

Gender Equity in Artificial Intelligence Decision-Making: Components, Patterns and Ecosystem

WU Dan1,2, GUO Qingyue1, LIU Jing1   

  1. 1. School of Information Management, Wuhan University, Wuhan, 430072;
    2. Women and Gender Study Center, Wuhan University, Wuhan, 430072
  • Online:2025-05-10 Published:2025-06-23
  • Contact: Correspondence should be addressed to WU Dan, Email: woodan@whu.edu.cn, ORCID: 0000-0002-2611-7317
  • Supported by:
    This is an outcome of the Major Research Plan Cultivation Project "Research on Interpretable Intelligent Decision-Making Methods Driven by both Data and Knowledge from the Perspective of Human-Computer Interaction"(92370112)supported by National Natural Science Foundation of China, and the Innovation Group Project "Human-Centered Artificial Intelligence Innovative Applications"(2023AFA012)supported by Natural Science Foundation of Hubei Province.

摘要: [目的/意义]深入探讨人工智能伦理问题,明确性别公平视角下人工智能决策研究现状,发掘该主题未来研究方向,推动人工智能决策迈向性别公平。[研究设计/方法]采用系统性文献综述方法,从国内外8个数据库检索2000年至今的相关主题文献,共计3,869篇,经过初筛与复筛,最终将50篇高相关文献列入分析,识别当前人工智能决策性别公平研究的主题、构件与模式,并引入信息生态理论构建研究生态系统。[结论/发现]社会技术视角下,当前人工智能决策性别公平研究聚焦于四大主题,分别涉及宏观层面的人工智能决策性别偏见现象剖析、细分领域的人工智能决策性别偏见问题、人工智能决策对性别公平的促进作用以及人类对决策性别公平的感知主题;研究构件涉及信息、信息主体、信息环境以及信息技术4个维度;研究模式则包含价值观辐射的传统模式、技术驱动的探索模式以及多维交织的协同模式。[创新/价值]系统剖析了当前国内外关于人工智能决策性别公平的研究,从信息生态视角构建起一个全方位、重协同的人工智能决策性别公平信息生态系统,从信息循环交互机制、多元主体合作机制以及人智交互协同机制为未来研究提供参考。

关键词: 人工智能, 人工智能决策, 性别公平, 性别偏见, 信息生态系统

Abstract: [Purpose/Significance] The study aims to deeply explore the ethical issues of artificial intelligence, clarify the current research status on gender equity in artificial intelligence decision-making, as well as to chart a directions for future research in this area, with the ultimate goal of promoting gender equity in artificial intelligence decision-making. [Design/Methodology] Using a systematic literature review method, the study searched eight domestic and international databases for relevant subject literature from 2000 to the present, yielding a total of 3,869 articles. After preliminary and re-screening, we finally included 50 highly relevant documents in our analysis to identify the topics, components and patterns of current research on gender equity in artificial intelligence decision-making, and to introduce the information ecology theory to build a research ecosystem. [Findings/Conclusion] In terms of sociotechnical perspectives, current research on gender equity in AI-based decision-making focuses on four key areas: analyzing gender bias phenomena at the macro level, examining this bias in subdivided fields, understanding the role of artificial intelligence in promoting gender equity, and human perception of equity in decision-making. The research encompasses four dimensions: information, information subject, information environment and information technology. Furthermore, the research patterns include the traditional type of values radiation, the technology-driven exploration type, and the multidimensional collaborative type. [Originality/Value] The study systematically analyzes current domestic and foreign research on gender equity in artificial intelligence decision-making, and builds an all-round, collaborative gender-equity information ecosystem in artificial intelligence decision-making from an information ecological perspective. It provides references for future research from the information circulation interaction mechanism, multi-subject cooperation mechanism and human-intelligence integration collaboration mechanism.

Keywords: Artificial intelligence, Artificial intelligence decision-making, Gender equity, Gender bias, Information ecosystem