图书情报知识 ›› 2023, Vol. 40 ›› Issue (6): 89-97,116.doi: 10.13366/j.dik.2023.06.089

• 情报、信息与共享 • 上一篇    下一篇

情报学研究中的时间序列分析:任务、过程与问题

陈果, 王凯月   

  1. 南京理工大学经济管理学院,南京,210094
  • 出版日期:2023-11-10 发布日期:2023-12-10
  • 通讯作者: 陈果(ORCID:0000-0003-2873-1051),博士,副教授,研究方向:领域知识分析、知识服务,Email:delphi1987@qq.com。
  • 作者简介:王凯月(ORCID:0009-0006-3068-584X),硕士研究生,研究方向:科技情报分析,Email:wky01129@163.com。
  • 基金资助:
    本文系教育部人文社会科学研究青年基金项目“基于领域实体的学科研究前沿识别体系构建研究”(21YJC870003)和江苏省社会科学基金青年项目“面向前沿技术监测的领域知识分析模式研究”(21TQC002)的研究成果之一。

Current Advances of Time Series Analysis in Information Science: Tasks, Processes and Problems

CHEN Guo, WANG Kaiyue   

  1. School of Economics and Management, Nanjing University of Technology, Nanjing, 210094
  • Online:2023-11-10 Published:2023-12-10
  • Contact: Correspondence should be addressed to CHEN Guo,Email:delphi1987@qq.com, ORCID:0000-0003-2873-1051
  • Supported by:
    This is an outcome of the project "Research on the Construction of a Disciplinary Research Frontier Identification System Based on Domain Entities"(21YJC870003)supported by Youth Foundation for Humanity and Social Scienceresearch of Ministry of Education of China, and the Youth Project "Research on Domain Knowledge Analysis Models for Frontier Technology Monitoring"(21TQC002)supported by Social Science Foundation of Jiangsu Province.

摘要: [目的/意义]梳理当前情报学中涉及时间序列分析的研究,并总结常见问题,为情报学研究的模型化、预测化发展提供借鉴。[研究设计/方法]从任务、过程与问题视角,对情报学研究中时间序列分析的应用任务场景、研究过程以及存在的问题进行归纳分析。[结论/发现]从任务视角来看,已有研究已经在包括学科主题演化、学术影响力评价、网络舆情分析、技术趋势分析任务场景得到了很好的应用,应用内容主要包括历史演化与未来预测两方面;从过程视角来看,已有研究主要按照时间序列的观测数据选取、时间切片方式、形态规律挖掘、预测与评价的顺序展开;从问题视角来看,未来的研究应多关注时间序列模型在短序列数据方面的应用,加强对时间序列分析结果的评估。[创新/价值]通过综合性的梳理,系统地总结了当前情报学中关于时间序列分析的研究,为该领域的研究者提供了一个全面的概述和参考。

关键词: 时间序列分析, 情报学研究, 学科主题演化, 学术影响力评价, 网络舆情分析, 技术趋势分析

Abstract: [Purpose/Significance] This paper aims to examine the current research progress in time series analysis within the field of information science and provide a comprehensive overview of common challenges, ultimately serving as a valuable reference for the advancement of modeling and prediction in information science research. [Design/Methodology] This study summarizes the application tasks, research processes and prevalent issues pertaining to time series analysis in information science research, specifically focusing on tasks, processes and problems. [Findings/Conclusion] The findings reveal that, in terms of tasks, existing research has successfully applied time series analysis in various scenarios such as subject theme evolution, academic influence evaluation, network sentiment analysis, and technology trend analysis. The application scope predominantly encompasses historical evolution and future prediction. Regarding the research processes, existing studies primarily follow a sequential order encompassing time series data selection, time segmentation methods, morphological pattern mining, prediction and evaluation. In terms of problems, future research should prioritize the development of time series models for short sequences and enhance the evaluation of time series analysis outcomes. [Originality/Value] Through a comprehensive review, this paper provides a comprehensive overview and reference for researchers in the field by systematically summarizing current research on time series analysis in information science through a comprehensive compendium.

Key words: Time series analysis, Information science research, Subject theme evolution, Academic influence evaluation, Network public opinion analysis, Technology trend analysis