图书情报知识 ›› 2022, Vol. 39 ›› Issue (4): 56-67.doi: 10.13366/j.dik.2022.04.056

• 学术聚焦 · 论文创新性研究 • 上一篇    下一篇

情报学论文创新性评价研究——LDA和SVM融合方法的应用

曹树金,曹茹烨   

  • 出版日期:2022-07-10 发布日期:2022-10-10

Evaluation of Paper Innovativeness in Information Science by a Method Integrated of LDA and SVM

  • Online:2022-07-10 Published:2022-10-10

摘要: [目的/意义]主题创新是学术论文创新最本质的特征之一。基于主题演化视角对情报学论文的创新性进行分析,以期提供动态评价的新思路。[研究设计/方法]选取情报学领域11种CSSCI期刊近20年的论文作为样本,结合LDA主题模型与SVM分类算法,对摘要进行潜在主题识别,并判断论文创新性。最后,采用统计方法验证评价结果的准确性。[结论/发现]应用的学术论文创新性评价方法能够有效识别情报学领域不同时期具有创新价值的论文,可以为学者的科研选题、论文主题创新性评价以及期刊的论文评审提供参考。[创新/价值]拓展融合LDA与SVM的创新性评价方法的应用领域,丰富基于内容的科研论文创新性评价体系。

关键词: 论文创新性, 研究主题, 情报学, 隐含狄利克雷分布(LDA), 支持向量机(SVM)

Abstract: [Purpose/Significance] Theme innovation is one of the most essential features of the innovation of scientific papers.This paper aims to analyze the innovativeness of information science papers based on the perspective of theme evolution, so as to provide a new insight for dynamic evaluation. [Design/Methodology] Papers selected from 11 CSSCI journals in the field of information science of the past 20 years are as samples, a method combined the LDA(Latent Dirichlet Allocation)topic model with SVM(Support Vector Machine)classification algorithm is utilized to identify potential topics in abstracts and judge the innovation of papers. Finally, statistical methods are used to verify the accuracy of the evaluation results. [Findings/Conclusion] The evaluation method of academic papers applied in this study can effectively identify papers with innovative value in different periods in the field of information science, and can provide references for selection of research topic,evaluation of paper themes innovation, and review of journal papers. [Originality/Value] This study expands the application field of innovative evaluation methods integrating LDA and SVM, and enriches the innovative evaluation system of scientific research papers based on content. 

Key words: Innovativeness of paper, Research topics;Information Science, Latent Dirichlet Allocation(LDA), Support Vector Machine(SVM)